

HPR MQP Flight Computer

Jake Roller

A-Term

Proposed Flight Computer Specs

- ARM microcontroller
- Sensors
 - Barometer
 - Inertial measurement unit (accel, gyro)
 - High-g accelerometer (analog?)
 - Magnetometer
 - GPS/GNSS
- Telemetry radio (LoRa)
- MOSFETs for deployment charges

Flight Computer Development

Flight Computer Layout

Flight Computer Comparison

- Number of servo channels still TBD but easily changeable and many pins broken out are already PWM capable
- Most flight computer/altimeters don't have very detailed datasheets
- Still need to find accelerometer & gyro resolutions
 - Noise may be a better measure of performance
- Does not require HAM license for telemetry radio

¥	Polaris 3 💌	Raven 4 💌	Stratologger CF 💌	Easy Mini 💌	TeleMega 💌	
Cost	\$ 75.00	\$ 160.00	\$ 69.95	\$ 80.00	\$ 400.00	
Availability	Custom	EOL	Limited	COTS	COTS	
Barometer Range	100,000 ft	100,000 ft	100,000 ft	100,000 ft	100,000 ft	
SL Barometer Precision	1 ft	1 ft	1 ft	1 ft	1 ft	
High-G Accelerometer Range	± 200g	± 105g	N/A	N/A	± 200g	
High-G Accelerometer Resolution		0.09g	g N/A N/A			
Low-G Accelerometer Range	± 16g	N/A	N/A	N/A	± 16g	
Low-G Accelerometer Resolution		N/A	N/A	N/A		
Gyro Range	2000 deg/s	N/A	N/A	N/A	2000 deg/s	
Gyro Resolution		N/A	N/A	N/A		
Magnetometer Range	3-axis	N/A	N/A	N/A	3-axis	
GPS Resolution	1.5 m	N/A	N/A	N/A	2.5 m	
Transmitter	915MHz	N/A	N/A	N/A	70cm (Ham)	
Servo Channels		N/A	N/A	N/A	4	
Pryo Channels	2	4	2		6	
Size	1.2 x 2.6"	0.79 x 1.77"	2.0 x 0.84"	1.5 x 0.8"	3.25 x 1.25"	

Flight Computer Upcoming Tasks

- Order STM32 microcontroller w/ test board to start coding
- Test flash chip and determine if μ SD card is necessary
- Finalize board layout + route traces
- Determine current draw for battery sizing

Flight Computer Progress

- Schematics mostly finalized
 - STM32F405 microcontroller
 - MS5611 barometer
 - ICM-42688-P precision IMU
 - ADXL375 high-g accelerometer
 - MMC5983MA magnetometer
 - GPS, LoRa, flash memory
- Board layout
 - Dimensions: 1.2" x 2.6"
 - Standard 4-40 mounting holes
- Ordered STM32 microcontroller w/ test board to start coding

Power Analysis

REFDES	Component	▼ Voltage [V]	Max Current [mA] 🛛 🔽	Notes	-	SF	1.5
J1	MicroMod Connector	3.3	240.000	STM32 - Teensy is lower		Total SF	631.4389
R12	I2C Pullup Resistor	3.3	0.702				
R13	I2C Pullup Resistor	3.3	0.702				
R1	Current Limiting Resistor	1.3	1.300				
D1	Power Indicator LED	2	1.300	Red			
R2	Current Limiting Resistor	0.5	5.000				
D2	GPIO Indicator LED	2.8	5.000	Blue			
U1	AP7361C Linear Regulator	3.3	0.080	Quiescent			
U3	ICM-42688-P	3.3	0.880	Gyro + Accel			
U4	MMC5983MA	3.3	0.450	7 Hz			
U5	MS5611-01BA03	3.3	1.400				
U8	ADXL375	3.3	0.145				
U6	W25Q128JVPIQ Flash	3.3	25.000	Chip erase			
U2	E220-900T22S LoRa	3.3	110.000	Full TX			
U9	U-Blox SAM-M10Q GPS	3.3	29.000	MAX-M8Q (higher than M10Q)			
Total			420.959				

Flight Computer Upcoming Tasks

- Test STM32 code using Arduino IDE
- Test flash chip and determine if μ SD card is necessary
- Route traces

Flight Computer Progress

Flight Computer Progress

B-Term

MicroMod STM32 Testing

- Received STM32 microcontroller
- Tested pinout and capability of available pins
- Discovered ADC issue
 - BATT/VIN sense pin doesn't seem to work leaving only 3 ADC input pins
 - Requires using UART channel as ADC
- Tested PWM outputs for servos (2)
- Must add MOSFET for buzzer

Updated Flight Controller Layout

Flight Computer Test Boards

- Developed boards to test sensor + telemetry integration
- Interfaces with microcontroller
- Boards + stencil: \$35 w/o shipping
- Components: \$325 w/o shipping
 - Can be used on full-scale board

Flight Computer Current Estimate

- 421 mA estimated FC current
- ~480 mA estimated servo current
 - Not continuous
- 450 mAh battery would provide just under 1 hr of runtime
- 1000 mAh battery would provide over 2 hr of runtime

REFDES 💌	Component 🔹	Voltage [V] 🔽	Max Current [mA] 💌	Notes 🔽
J1	MicroMod Connector	3.3	240.000	STM32 - Teensy is lower
R12	I2C Pullup Resistor	3.3	0.702	
R13	I2C Pullup Resistor	3.3	0.702	
R1	Current Limiting Resistor	1.3	1.300	
D1	Power Indicator LED	2	1.300	Red
R2	Current Limiting Resistor	0.5	5.000	
D2	GPIO Indicator LED	2.8	5.000	Blue
U1	AP7361C Linear Regulator	3.3	0.080	Quiescent
U3	ICM-42688-P	3.3	0.880	Gyro + Accel
U4	MMC5983MA	3.3	0.450	7 Hz
U5	MS5611-01BA03	3.3	1.400	
U8	ADXL375	3.3	0.145	
U6	W25Q128JVPIQ Flash	3.3	25.000	Chip erase
U2	E220-900T22S LoRa	3.3	110.000	Full TX
U9	U-Blox SAM-M10Q GPS	3.3	29.000	MAX-M8Q (higher than M10Q)
Total			420.959	

Flight Computer Test Boards

- Sensor + telemetry test boards sent to fab
- Received some components
- Identified potential antenna connector issue
 - Need "dogbones" to account for router bit
- Going to test standalone buzzer & MOSFET

Flight Computer Test Boards

- Received both test boards from OSH Park
 - Minor manufacturing error with MMCX port
- Assembled and tested Telemetry board (GPS + LoRa)
 - LoRa does not work with STM32 (works with Teensy & Arduino)
 - No accessible existing library for STM32
 - MicroMod Teensy back in stock ☺
- Sensor board mostly assembled and tested
 - Successful transmission of sensor data to "ground station" Teensy

Flight Computer Progress

- Continued testing of PCBs
 - Developed preliminary code for data structure
 - All sensors work!
- Added MOSFET for buzzer to prevent brown-out
 - Same P/N as pyro charge MOSFET
- Added microSD slot for datalogging
 - Supplements SPI flash
- Finished full-board routing
 - Review -> ordering

Flight Computer Progress & Testing

- Finished subsystem testing
 - Sensors, telemetry systems, pyro MOSFETs, and buzzer work
- Finalized board layout with minor tweaks from testing
- Ordered boards & components

Flight Computer Boards

- Received PCBs from fab
 - MMCX antenna connector issue fixed
 - Silkscreen is a *little* small
- All components ready for first assembly attempt

C-Term

Flight Computer

- Fully assembled flight computer
- All sensors function properly
- Working through e-match channel issue
 - Not flight-critical
- Need to test with servo
- GPS testing

Flight Computer Testing

- Datalogging functionality added, ready for test flight
- Developed integrated battery + board mount for testing
- Added capability to dump data from SD card, reduces mechanical wear on slot
- Implemented Kalman Filter on Teensy microcontroller, initial tests look promising

Flight Computer Drone Testing

Microcontroller Code

- Improved datalogging capabilities
 - Discovered problem with inconsistent timestep (dt) due to slow SD write
 - New method of logging data in RAM, then writing to SD less frequently (still not perfect)
- Remapped IMU axes to match intended coordinate system
- Writing flight code, preparing for tests

